Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene.

Identifieur interne : 000897 ( Main/Exploration ); précédent : 000896; suivant : 000898

Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene.

Auteurs : A P Gleave [Nouvelle-Zélande] ; D S Mitra ; S R Mudge ; B A Morris

Source :

RBID : pubmed:10412902

Descripteurs français

English descriptors

Abstract

Transgenic tobacco plants were produced that contained single-copy pART54 T-DNA, with a 35S-uidA gene linked to loxP-flanked kanamycin resistance (nptII) and cytosine deaminase (codA) genes. Retransformation of these plants with pCre1 (containing 35S transcribed cre recombinase and hygromycin (hpt) resistance genes) resulted in excision of the loxP-flanked genes from the genome. Phenotypes of progeny from selfed-retransformed plants confirmed nptII and codA excision and integration of the cre-linked hpt gene. To avoid integration of the hpt gene, and thereby generate plants totally free of marker genes, we attempted to transiently express the cre recombinase. Agrobacterium tumefaciens (pCre1) was cocultivated with leaf discs of two pART54-transformed lines and shoots were regenerated in the absence of hygromycin selection. Nineteen of 773 (0.25%) shoots showed tolerance to 5-fluorocytosine (5-fc) which is converted to the toxic 5-fluorouracil by cytosine deaminase. 5-fc tolerance in six shoots was found to be due to excision of the loxP-flanked region of the pART54 T-DNA. In four of these shoots excision could be attributed to cre expression from integrated pCre1 T-DNA, whereas in two shoots excision appeared to be a consequence of transient cre expression from pCre1 T-DNA molecules which had been transferred to the plant cells but not integrated into the genome. The absence of selectable marker genes was confirmed by the phenotype of the T1 progeny. Therefore, through transient cre expression, marker-free transgenic plants were produced without sexual crossing. This approach could be applicable to the elimination of marker genes from transgenic crops which must be vegetatively propagated to maintain their elite genotype.

DOI: 10.1023/a:1006184221051
PubMed: 10412902


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene.</title>
<author>
<name sortKey="Gleave, A P" sort="Gleave, A P" uniqKey="Gleave A" first="A P" last="Gleave">A P Gleave</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Development Group, HortResearch, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Plant Development Group, HortResearch, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mitra, D S" sort="Mitra, D S" uniqKey="Mitra D" first="D S" last="Mitra">D S Mitra</name>
</author>
<author>
<name sortKey="Mudge, S R" sort="Mudge, S R" uniqKey="Mudge S" first="S R" last="Mudge">S R Mudge</name>
</author>
<author>
<name sortKey="Morris, B A" sort="Morris, B A" uniqKey="Morris B" first="B A" last="Morris">B A Morris</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10412902</idno>
<idno type="pmid">10412902</idno>
<idno type="doi">10.1023/a:1006184221051</idno>
<idno type="wicri:Area/Main/Corpus">000900</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000900</idno>
<idno type="wicri:Area/Main/Curation">000900</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000900</idno>
<idno type="wicri:Area/Main/Exploration">000900</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene.</title>
<author>
<name sortKey="Gleave, A P" sort="Gleave, A P" uniqKey="Gleave A" first="A P" last="Gleave">A P Gleave</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Development Group, HortResearch, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Plant Development Group, HortResearch, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mitra, D S" sort="Mitra, D S" uniqKey="Mitra D" first="D S" last="Mitra">D S Mitra</name>
</author>
<author>
<name sortKey="Mudge, S R" sort="Mudge, S R" uniqKey="Mudge S" first="S R" last="Mudge">S R Mudge</name>
</author>
<author>
<name sortKey="Morris, B A" sort="Morris, B A" uniqKey="Morris B" first="B A" last="Morris">B A Morris</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (growth & development)</term>
<term>Antimetabolites (pharmacology)</term>
<term>Coculture Techniques (MeSH)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Flucytosine (pharmacology)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Dominant (genetics)</term>
<term>Genes, Lethal (genetics)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Integrases (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Plants, Genetically Modified (drug effects)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (growth & development)</term>
<term>Plants, Toxic (MeSH)</term>
<term>Tobacco (drug effects)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (growth & development)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Viral Proteins (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Agrobacterium tumefaciens (croissance et développement)</term>
<term>Antimétabolites (pharmacologie)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Flucytosine (pharmacologie)</term>
<term>Gènes dominants (génétique)</term>
<term>Gènes létaux (génétique)</term>
<term>Integrases (génétique)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines virales (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tabac (croissance et développement)</term>
<term>Tabac (effets des médicaments et des substances chimiques)</term>
<term>Tabac (génétique)</term>
<term>Techniques de coculture (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Vecteurs génétiques (MeSH)</term>
<term>Végétaux génétiquement modifiés (croissance et développement)</term>
<term>Végétaux génétiquement modifiés (effets des médicaments et des substances chimiques)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux toxiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Integrases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antimetabolites</term>
<term>Flucytosine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Dominant</term>
<term>Genes, Lethal</term>
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Gènes dominants</term>
<term>Gènes létaux</term>
<term>Integrases</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antimétabolites</term>
<term>Flucytosine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Coculture Techniques</term>
<term>Crosses, Genetic</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Markers</term>
<term>Genetic Vectors</term>
<term>Phenotype</term>
<term>Plants, Toxic</term>
<term>Transformation, Genetic</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Croisements génétiques</term>
<term>Marqueurs génétiques</term>
<term>Phénotype</term>
<term>Protéines virales</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Techniques de coculture</term>
<term>Transformation génétique</term>
<term>Vecteurs génétiques</term>
<term>Végétaux toxiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transgenic tobacco plants were produced that contained single-copy pART54 T-DNA, with a 35S-uidA gene linked to loxP-flanked kanamycin resistance (nptII) and cytosine deaminase (codA) genes. Retransformation of these plants with pCre1 (containing 35S transcribed cre recombinase and hygromycin (hpt) resistance genes) resulted in excision of the loxP-flanked genes from the genome. Phenotypes of progeny from selfed-retransformed plants confirmed nptII and codA excision and integration of the cre-linked hpt gene. To avoid integration of the hpt gene, and thereby generate plants totally free of marker genes, we attempted to transiently express the cre recombinase. Agrobacterium tumefaciens (pCre1) was cocultivated with leaf discs of two pART54-transformed lines and shoots were regenerated in the absence of hygromycin selection. Nineteen of 773 (0.25%) shoots showed tolerance to 5-fluorocytosine (5-fc) which is converted to the toxic 5-fluorouracil by cytosine deaminase. 5-fc tolerance in six shoots was found to be due to excision of the loxP-flanked region of the pART54 T-DNA. In four of these shoots excision could be attributed to cre expression from integrated pCre1 T-DNA, whereas in two shoots excision appeared to be a consequence of transient cre expression from pCre1 T-DNA molecules which had been transferred to the plant cells but not integrated into the genome. The absence of selectable marker genes was confirmed by the phenotype of the T1 progeny. Therefore, through transient cre expression, marker-free transgenic plants were produced without sexual crossing. This approach could be applicable to the elimination of marker genes from transgenic crops which must be vegetatively propagated to maintain their elite genotype.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10412902</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>40</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1999</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene.</ArticleTitle>
<Pagination>
<MedlinePgn>223-35</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Transgenic tobacco plants were produced that contained single-copy pART54 T-DNA, with a 35S-uidA gene linked to loxP-flanked kanamycin resistance (nptII) and cytosine deaminase (codA) genes. Retransformation of these plants with pCre1 (containing 35S transcribed cre recombinase and hygromycin (hpt) resistance genes) resulted in excision of the loxP-flanked genes from the genome. Phenotypes of progeny from selfed-retransformed plants confirmed nptII and codA excision and integration of the cre-linked hpt gene. To avoid integration of the hpt gene, and thereby generate plants totally free of marker genes, we attempted to transiently express the cre recombinase. Agrobacterium tumefaciens (pCre1) was cocultivated with leaf discs of two pART54-transformed lines and shoots were regenerated in the absence of hygromycin selection. Nineteen of 773 (0.25%) shoots showed tolerance to 5-fluorocytosine (5-fc) which is converted to the toxic 5-fluorouracil by cytosine deaminase. 5-fc tolerance in six shoots was found to be due to excision of the loxP-flanked region of the pART54 T-DNA. In four of these shoots excision could be attributed to cre expression from integrated pCre1 T-DNA, whereas in two shoots excision appeared to be a consequence of transient cre expression from pCre1 T-DNA molecules which had been transferred to the plant cells but not integrated into the genome. The absence of selectable marker genes was confirmed by the phenotype of the T1 progeny. Therefore, through transient cre expression, marker-free transgenic plants were produced without sexual crossing. This approach could be applicable to the elimination of marker genes from transgenic crops which must be vegetatively propagated to maintain their elite genotype.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gleave</LastName>
<ForeName>A P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Plant Development Group, HortResearch, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mitra</LastName>
<ForeName>D S</ForeName>
<Initials>DS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mudge</LastName>
<ForeName>S R</ForeName>
<Initials>SR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morris</LastName>
<ForeName>B A</ForeName>
<Initials>BA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000963">Antimetabolites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D83282DT06</RegistryNumber>
<NameOfSubstance UI="D005437">Flucytosine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C045073">Cre recombinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D019426">Integrases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000963" MajorTopicYN="N">Antimetabolites</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018920" MajorTopicYN="N">Coculture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005437" MajorTopicYN="N">Flucytosine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005799" MajorTopicYN="N">Genes, Dominant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005804" MajorTopicYN="N">Genes, Lethal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019426" MajorTopicYN="N">Integrases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010947" MajorTopicYN="Y">Plants, Toxic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="Y">Viral Proteins</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>7</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10412902</ArticleId>
<ArticleId IdType="doi">10.1023/a:1006184221051</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Rep. 1995 Dec;15(3-4):159-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Nov;23(4):793-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8251632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1987 Nov;8(6):439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1992 Jul;234(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1495484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Dec 11;19(23):6373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1754373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 1992 Nov;1(6):239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1301215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1993;225:890-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8231893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Jan;18(2):353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1310059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Jul;10(1):165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8758986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Jun;7(6):2087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3037344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10558-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1990 Sep;223(3):369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2176714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1993 Dec;11(13):1537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 May;8(5):873-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8672885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Nov;8(5):637-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8528276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Feb;21(4):705-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8448369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1994 Sep;12(9):870-1, 873-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7765227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Oct 15;94(2):155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1701747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 8;227(4691):1229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1988 May;11(3):365-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Jul 2;91(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2205542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Jan;14(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2101312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1993 Dec;9(12):413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8122308</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Mitra, D S" sort="Mitra, D S" uniqKey="Mitra D" first="D S" last="Mitra">D S Mitra</name>
<name sortKey="Morris, B A" sort="Morris, B A" uniqKey="Morris B" first="B A" last="Morris">B A Morris</name>
<name sortKey="Mudge, S R" sort="Mudge, S R" uniqKey="Mudge S" first="S R" last="Mudge">S R Mudge</name>
</noCountry>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Gleave, A P" sort="Gleave, A P" uniqKey="Gleave A" first="A P" last="Gleave">A P Gleave</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000897 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000897 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10412902
   |texte=   Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10412902" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024